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INTRODUCTION 

The systems of l i n e a r  a lgeb ra i c  equations which arise i n  solving 

d i f f e r e n t i a l  equations by f i n i t e  element methods usual ly  have matrices 

which are sparse  and of a c e r t a i n  r egu la r  s t r u c t u r e .  For the s o l u t i o n  

of such a system by el iminat ion,  i t  i s  d e s i r a b l e  t o  use these p rope r t i e s  

of the  corresponding matrix.  More s p e c i f i c a l l y ,  w e  wish t o  f i n d  an 

ordering of the  rows and columns and an algorithm f o r  solving t h e  

system such t h a t  t he  s to rage  requirements and t h e  number of operat ions 

performed during the  el iminat ion are minimized. This paper discusses  

the  problem of f ind ing  such a permutation of rows and columns and an 

algorithm f o r  t h i s  type of ordered system of equations.  

There e x i s t  some approaches t o  t h i s  problem i n  which t h e  s p a r s i t y  

is  used t o  a c e r t a i n  ex ten t .  One of them i s  very general  i n  t h a t  t he  

optimal (o r  near ly  optimal) order ing is  sought and that the algorithm 

f o r  solving the  ordered system treats the  matr ix  element by element t o  

ensure t h a t  only necessary operat ions are performed. This case and the 

case of bandmatrices are compared wi th  r e spec t  t o  t h e  r e g u l a r i t y  of t h e  

s t r u c t u r e  of a given matr ix  before  and af ter  ordering. 

with t h i s  comparison another approach i s  introduced. A type of matr ix  

more general  than a bandmatrix i s  considered as w e l l  as t h e  means t o  

order t he  rows and columns t o  g e t  t h i s  form. Then examples of matrices 

reordered by the  given procedure together  wi th  t h e  corresponding r e s u l t s  

are discussed. 

I n  connection 
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1. Problems of e l imina t ion  f o r  spa r se  systems. 

I n  solving d i f f e r e n t i a l  equations by the f i n i t e  element o r  

f i n i t e  d i f fe rence  method w e  usua l ly  obta in  systems of l i n e a r  a lgebra ic  

equat ions,  with l a r g e  sparse  matrices of c e r t a i n  regular  zero-nonzero 

s t r u c t u r e s ,  which must be solved. When solving these systems by 

Gauss el iminat ion w e  w i l l  want t o  use  the s p a r s i t y  as w e l l  as the  

r e g u l a r i t y  of zero-nonzero s t r u c t u r e  of a given matrix. 

t o  reduce s to rage  requirements and t h e  number of operat ions performed 

during the el iminat ion.  Fewer operat ions take less t i m e  and r e s u l t  

i n  less roundoff e r r o r .  

Our a i m  is 

The f i r s t  problem is ,g iven  an order ing of rows and columns, 

w e  want t o  operate  only on such elements which are involved and changed 

i n  the  el iminat ion process i t s e l f .  The second problem i s  t o  f ind  an 

order ing of rows and columns of a given matr ix  so t h a t  the  number of 

nonzero elements created i n  the forward course of Gauss e l iminat ion 

as w e l l  as t h e  number of operat ions performed is minimal f o r  a given 

matrix.  

before  as w e l l  as a f t e r  reorder ing it. Usually w e  so lve  many systems 

with matr ices  of t he  same s t r u c t u r e  which d i f f e r  from each o ther  only 

by some parameter, f o r  example a mesh s i z e  h e It is  des i r ab le  t o  

f ind  a general  rule f o r  order ing such classes of matrices. 

Further w e  should consider t he  s t r u c t u r e  of a given matrix 
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2. A b r i e f  survey of techniques used. 

One of t h e  s implest  ways t o  so lve  these  problems is t o  

consider c e r t a i n  matr ices  as bandmatrices. L e t  us have an nxn 

s ymme t r i  c b andma t r i x  . 

A= 

L e t  us suppose t h a t  the nonzero elements appear only i n  t h e  indicated 

band, i.e. a # 0 li-j I 2 m . Then i t  is s u f f i c i e n t  t o  s t o r e  

and opera te  only on the  elements which are wi th in  the  band o r  i n  the  
i j  

symmetric case i n  t h e  upper h a l f  of t he  band, 

The number of mul t ip l i ca t ions  performed during t h e  forward 

m(m + 3) 
2 course of Gauss e l iminat ion depends upon m 

as w e l l  as t h e  s torage  requirements. 

The bandmatrices o f f e r  important advantages. F i r s t ,  f o r  

a symmetric bandmatrix A a l l  the  " f i l l  in" due t o  e l iminat ion is  

wi th in  the  o r i g i n a l  band. On t h e  o ther  hand a l l  the  elements which 

are wi th in  the  band are operated on, even those which are possibly 

not  involved i n  t h e  el iminat ion process i t s e l f .  (For example the 

elements denoted by * i n  t he  example 2.1.) 
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Example 2.1. 

A= x x 
x 

X 
x 

x 
x 
x x  
x x  

x 
X 

x 
x 

Secondly, t he  el iminat ion scheme f o r  a symmetric bandmatrix is 

p a r t i c u l a r l y  simple. Also da t a  handling is  very simple because the  

zero-nonzero s t r u c t u r e  of a matr ix  is  described i n  terms of m , n . 
A change of the  parameter h w i l l  r e s u l t  only i n  a change 

of m , n . But very o f t en  i t  is use fu l  t o  f ind  a permutation of rows 

and columns t o  reduce the  width of a bandmatrix. This is  a complicated 

problem and i t  has been discussed by E. C u t h i l l ,  J. McKee [l], G. G. 

Alway, D. W. Martin [2] ,  R. Rosen [3 ] ,  and o thers .  

The most e f f i c i e n t  way f o r  solving the  sparse l i n e a r  

a lgebra ic  systems (from the  poin t  of view of minimization of number 

of operat ions and s torage)  is t o  f ind  an ordering of rows and columns 

which minimizes t h e  number of operat ions and the  number of nonzero 

elements created.  

optimal ordering have been discussed by many authors;  S. Parter [ 4 ] ,  

R. P. Tewarson [5], W. Re S p i l l e r s ,  N. Hickerson 171, and others .  

Problems of f inding a so-called optimal o r  near&- 
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L e t  us have a symmetric matrix A with the  graph G and 

l e t  us suppose t h a t  the  el iminat ion can be performed i n  the  a r b i t r a r y  

order ing of rows and columns. 

by symmetric p o s i t i v e  d e f i n i t e  matrices.)  Also l e t  A be i r r educ ib l e  

(then G is connected). 

(This assumption is s a t i s f i e d ,  f o r  example, 

Example 2 . 2 .  

L e t  us so lve  

>( 

x 

x 

0 

the  

! 

system of l i n e a r  a lgebra ic  equations: 

A x = y  s 

Eliminating the  unknown xi (or  t h e  node i i n  the  graph) 
bi(bi 1- 3) 

3 m u l t i p l i c a t i o n s ,  where bi is a number of we must perform 

nodes which are connected t o  the  node i (o r  the  number of nonzero 

elements i n  the  row & ). 
Lee N(i)  be a set  of nodes m G which are connected with 

the  node i by an edge i n  the  graph G (or  N ( i )  = (m 
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Eliminating the  node i from t h e  graph G we g e t  t he  

graph Gi , where i 4 Gi and a l l  the  nodes m E M ( i )  

wise connected. Therefore e l iminat ing the  node i from G ( the  

are pa i r -  

unknown x . )  we ob ta in  zi new edges i n  the  graph (z  new nonzero 

elements are created s ince ,  by symmetry, we consider only t h e  upper 

t r i angu la r  matr ix) .  

1 i 

I n  the  example 2.2: 

t he  G1 

where the  edge connecting 3 , 6 has  been added. Eliminating t h e  

node 2 w e  g e t  t h e  graph Gl' (I 
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where no edge has been added i n t o  the  o r i g i n a l  graph. I n  p r a c t i c e  

the  near ly  optimal ordering is  usual ly  found by l o c a l  minimization 

of degree (bi) o r  f i l l  i n  (zi) i n  every s tep .  

very simple and o f t en  very e f f i c i e n t .  

These algorithms are 

Having a near ly  optimal o r  optimal ordering w e  must then 

solve the  ordered system by an algorithm operating only on those 

elements which are ac tua l ly  changed by t h e  el iminat ion process 

(e.g., see F. Gustavson [ 6 ] ) .  Therefore,  t he  matrix must be t r ea t ed  

element by element and the  zero-nonzero s t r u c t u r e  of such a matr ix  

is described by the  pos i t ions  of every nonzero element. Therefore,  

the  use of t h i s  program can e n t a i l  a considerable amount of work. 

approach i s  very general  ( fu r the r  t h i s  algorithm f o r  solving the  

system by e l imina t ion  is ca l l ed  “general  algorithm”) and i t  i s  

p a r t i c u l a r l y  s u i t a b l e  f o r  those matr ices  whose nonzero elements occur 

i n  no regular  s t ruc tu re .  

This 

3. The pipematrices e 

L e t  us t ry  another approach. L e t  us consider a symmetric 

matrix of t he  form: 
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The nonzero elements are ind ica t ed  by t h e  x 's .  

matrix a "pipematrix." 

with a matr ix  of t h i s  form only t h e  elements of the  marked p a r t s  of  

columns ( t h e  so-cal led "pipes") must be  operated on. No o the r  

element is changed by the  e l imina t ion  process.  If the  p ipes  involve 

only nonzero elements, no nonzero element i s  crea ted  during the  

e l imina t ion ,  i .e. " f i l l  in" equals  zero. I f  some zeroes appear i n  

the  p ipes ,  nonzero elements may be  created.  

We s h a l l  c a l l  t h i s  

I n  t h e  e l imina t ion  process appl ied t o  a system 

The algorithm f o r  so lv ing  the  l i n e a r  a lgebra ic  systems 

with pipematrices treats t h e  elements i n  the  pipes.  

L e t  us have a matr ix  A i n  the  example 3.1. 

Example 3.1. 

A =  

Solving the  system by the  genera l  algorithm, where t h e  elements of a 

matr ix  are t r e a t e d  ind iv idua l ly ,  a nonzero element is crea ted  i n  

pos i t i on  3, 4 ,  however the  element a remains zero (is not  operated 

on) so t h a t  f i l l  is  one element Considering the  matrix as a 

pipematrix,  w e  opera te  wi th  the  whole p ipes ,  i .e.,  with elements all; 

24 
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a22; a139 a239 a33; a143 a249 a349 a44; a459 355" 

genera l ,  when the  pipes  involve some zeroes w e  may perform operations 

which are not necessary (as occurred i n  the  example 2.1 of a 

bandmatrix). 

Therefore,  i n  - 

It is more general  t o  consider an a r b i t r a r y  matr ix  as a 

I f  we  consider an a r b i t r a r y  pipematrix r a t h e r  than a bandmatrix. 

matr ix  as a pipematrix w e  genera l ly  perform fewer o r  a t  most the  

same number of operat ions as i f  w e  consider i t  as a bandmatrix. 

On the  o ther  hand i t  is less general  t o  treat a matr ix  

as a pipematrix than t o  treat i t  by the  general  algorithm - 
element by elemento 

described by the  pos i t ions  of whole pipes  which makes t h i s  algorithm 

as w e l l  as i t s  use (handling da ta)  simpler than the  general  one. 

The zero-nonzero s t r u c t u r e  of a pipematrix is 

We can descr ibe the  zero-nonzero s t r u c t u r e  of a given 

pipematrix by n parameters m where (ma R) is t h e  f i r s t  nonzero 

pos i t ion  i n  the  p ipe  ending a t  ( a ,  a ) ,  I n  t h e  example 3*11: 

a 

m l = 1 9  m 2 = 2 ,  m 3 2 1 ,  m 4 = 1 ,  m 5 = 4  e 

L e t  us have a pipematrix A L e t  q ,  be the  number of nonzero 

elements ( o r  elements which are considered nonzero because they 

k 

appear i n  the  pipes) i n  t h e  KOW i ( i n  the  upper t r i a  

t h e  example 3.1: q1 = 2 q2 = 2 q3 = 2 q4 = 1 q5 = 0 e 

Then the  number of mul t ip l ica t fons  performed during the forward course 

of Gauss e l imina t ion  is 
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2 i= 1 

It i s  evident  t h a t  t h e  number of operat ions performed during 

the  e l imina t ion  process f o r  a pipematrix depends on the  number of pipes  

which i n t e r s e c t  a p a r t i c u l a r  row and on the  length of every pipe.  

Now the  problem arises t o  f ind  a permutation by which the  

matr ix  would be  reordered i n t o  the form of a pipematrix whose pipes  

include as few zero elements as poss ib le .  

L e t  A b e  a symmetric i r r educ ib l e  m a t r i x  which can be  elini- 

nated wi th  an a r b i t r a r y  order  of rows and columns. Suppose A can b e  

permuted i n t o  the  pipematrix form with f u l l  pipes .  L e t  Go b e  the 

graph of the  matrix A e The following procedure gives  the  permutation 

by which the  matrix i s  reordered i n t o  the  form w i t h  f u l l  p ipes .  

Procedure 1 

S t e p  1 

1. S e t  S1 = { i : z  = 0 )  
1 

i 

(According t o  the  assumptions about the matrix A there e x i s t s  

a t  least  one node i f o r  which z = 0 e )  i 

2. Either 

A. Se l ec t  i E S ;  a r b i t r a r i l y  or  

and select  i E Si a r b i t r a r i l y  a 
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1 3. S e t  S = {m: mEN(i))  (= (m: a # 0)) 
i m  

Eliminate t h e  node i from the  graph Go . 

Step k = 2 , . . . , n-1 

k-I} j E N ( m )  f o r  a l l  m E S  

Sk-lCRk) 

k k 2. S e t  S1 = { j :  j € R  , z = 0)  
j 

k-l and r epea t  the  s t e p  k-1 . If S1 = 0 d e l e t e  i from Si k 

k 
1 3. If S # 9, then corresponding t o  the  choice of e i t h e r  2A o r  2B 

i n  s t e p  1, choose e i t h e r  

k A.  S e l e c t  i E S l  a r b i t r a r i l y  or  

(= {j: j i s  an index of the longest  p ipe )  

k 
j :  j E S 2  , b j  = min b 

2 

k S e l e c t  i E S 3  a r b i t r a r i l y  

4 .  S e t  Sk = {m: m€N(i ) )  

Eliminate the  node i from t h e  graph Gk-l . 
Remark 

If w e  choose the  a l t e r n a t i v e  2B i n s t ead  of 2A i n  s t e p  1 

and 3B i n s t ead  of 3A w e  may r equ i r e  less t i m e  t o  complete the  process.  
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With t h i s  algorithm the  matrix is  permuted i n t o  the  pipematrix form 

with f u l l  pipes  under t h e  assumptions mentioned above. 

Procedure 2 

S t e p  1 - 
k 

k={l , .  . . ,n} 

2. E i t h e r  

1 
A .  Select i € S l  a r b i t r a r i l y  o r  

B .  S e t  S i  = f :  i E S l  1 , bi = min b 

1 kES 

Se lec t  i E S i  a r b i t r a r i l y .  

1 3.  S e t  S = {m: mEN(i ) )  

Eliminate the  node i from the graph G (or ,  equiva len t ly ,  connect 

t h e  nodes m EN(i)  pairwise) .  

0 

Step k = 2,  ... , n-1 

j :  jEN(m) f o r  a l l  m E S  

k 
j :  j € R  , z = m i n  z 

j 

3 .  Corresponding t o  the  choice of 2A o r  2B above, choose e i t h e r  

k A. Select i E S l  a r b i t r a r i l y  o r  

, where k k 
B .  S e t  S 2  = : j E s l  , j E s k - p j  p j  = m a x  pq 

k 
k qES1 

S e t  S: = f: j E S 2  ; b j  = 

k 
Select i E S 3  a r b i t r a r i l y  e 

k 4 .  S e t  S = {m: mEN(i))  e 

Eliminate the  node from the graph Gk-l . 
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Remark 

I f  w e  choose the  a l t e r n a t i v e s  2B ins tead  of 2A and 3B 

ins tead  of 3A w e  sometimes obta in  a b e t t e r  ordering. 

The procedures shown above have these  important 

proper t ies  : 

1. I f  the  matr ix  can be permuted i n t o  the  form with f u l l  pipes 

then procedure 1 gives t h e  corresponding permutation. 

2. I f  procedure 2 is appl ied t o  t h e  matrices which cannot be permuted 

i n t o  t h e  form with f u l l  pipes i t  may g ive  an acceptable order ing 

i n  some examples as w i l l  be shown i n  Chapter 4. 

3. Procedure 2 is not  very t i m e  consuming because only a c e r t a i n  

set of nodes is t e s t ed  i n  each s t ep .  

4. The only t i m e  consuming p a r t  of procedure 1 may be p a r t  2 i n  

t h e  s t eps  k = 2,  . .) n - 1 where i t  can t h e o r e t i c a l l y  happen 

t h a t  w e  go back t o  the  very beginning of t he  procedure several 

t i m e s .  However, i n  the  computations performed where a matrix 

w a s  permuted i n t o  the form with f u l l  pipes  only procedure 2 w a s  

used and, therefore ,  t h i s  problem did not arise. 

Assume w e  have an a r b i t r a r y  matrix ordered by the  permutation 

given by e i t h e r  procedure 1 o r  2. L e t  us so lve  the  system of 

l i n e a r  a lgeb ra i c  equations by the  algorithm f o r  pipematrices.  

Then the  same number of operat ions are required as i n  t h e  

general  algorithm where the  matr ix  is t r e a t e d  element by element 

(e.g.9 F. Gustavson [t;]) .  This follows from the  procedure i t s e l f .  

5. 
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4. Examples and r e s u l t s .  

Procedure 2 w a s  appl ied  t o  several types of matrices. 

The r e s u l t s  were very i n t e r e s t i n g -  

where the  procedure y i e l d s  a s a t i s f a c t o r y  ordering. In procedure 2,  

the  p a r t s  2B and 3B w e r e  used ( ins tead  of 2A and 3A, respec t ive ly) .  

k I n  t h e  p a r t s  2 B  and 3B where "Select i E  Si (S3) a r b i t r a r i l y "  i s  

recommended, the  node with t h e  lowest number i n  the  o r i g i n a l  order ing 

w a s  se lec ted .  

Example 4.1 

L e t  us show two t y p i c a l  examples 

(The example of a mat r ix  t h a t  can be  reordered i n t o  the  

pipematrix form wi th  f u l l  pipes.) 

The matr ix  which arises from mesh refinement i n  one dimension 

when t h e  s o l u t i o n  of a c e r t a i n  boundary value problem is approximated 

by one type of h i l l  funct ions (See: LBabuska 181, [9]) has a graph 

of t he  type i n  the  Figo 4.1. 

The corresponding mat r ix  is  given i n  Fig. 4.2. Procedure 

i n  2 gives  the  order ing i n  Fig. 4 * 3  and the  reordered matrix is A. 

Fig. 4.4. Eliminating the  system with the  matrix A. (by the  

e l imina t ion  procedure f o r  pipematrices) w e  g e t  zero f i l l .  

We can obta in  several order ings  by which the  matr ix  is 

reordered i n t o  t h e  pipematrix form with f u l l  pipes  by s t a r t i n g  wi th  

var ious o r i g i n a l  order ings.  

Example 4.2 

Suppose w e  have a matrix with graph G i n  t he  f i g u r e  4.5 

(which arises from using t h e  f i v e  poin t  d i f f e rence  formula i n  
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approximating c e r t a i n  boundary value problems on an L-shaped domain). 

I f  w e  number the nodes i n  the  so-called n a t u r a l  order ing (See Fig. 4.5) 

w e  ob ta in  a bandmatrix with m = m4 e 

L e t  us number the  nodes by procedure 2. W e  then have the 

order ing ind ica ted  i n  Fig. 4 . 6 .  With t h i s  order ing,  the  number of 

operat ions performed during the  el iminat ion i n  p a r t  I (see Fig. 4.5) 

is less than o r  equal t o  t h a t  f o r  the  bandmatrix with m = min (m19 

4- m ) and i n  p a r t  I1 with  m = min (m m ) . This can r e s u l t  i n  m2 3 3 4  

a s u b s t a n t i a l  t i m e  and operat ions reduction. The same r e s u l t s  are 

v a l i d  f o r  var ious types of L-shaped domains which d i f f e r  only i n  the  

r a t i o s  of 

graph i n  Fig. 4.5 where only h ( a  mesh s i z e )  is d i f f e r e n t ,  i t  is 

not necessary t o  seek an order ing f o r  every matr ix  because the  procedure 

gives  a general  rule f o r  order ings with var ious magnitudes of h e 

For example, l e t  us consider t he  L-shaped domain above. Then f o r  

every pa r t  of t he  domain the re  is a formula descr ibing the  r e l a t i o n  

between the coordinates of the  node (x,  y )  i n  the  n e t  (it is  a l s o  the  

node i n  the graph of the matrix) and the number M(x, y) i n  the  

ordering. For example i n  p a r t  1 (See Fig. 4.7) 

m 19 m 2 s  m3’ m4 . Moreover, having matr ices  with the  

(where $bx = 1 i f  x = 0 and = O  i f  y = O )  
OY 
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is va l id .  

domain. 

S i m i l a r  formulas are v a l i d  f o r  t h e  o the r  p a r t s  of the  

L e t  us have a matr ix  wi th  graph G i n  Fig,  4.5. L e t  us 

permute the  rows and columns using the  order ing given by procedure 2 

and l e t  us so lve  t h e  system by the  algorithm f o r  pipematrices.  Also 

l e t  us permute the  rows and columns i n  the  ordering given by the  

''minimal degree algorithm" and so lve  the  system by the  genera l  

algorithm. Then w e  have the  following r e s u l t s :  

(ml= 5, m2 = 5,  m3 = 5 ,  m4 = 12,  n = 80) 

1. Ordered i n  the  so-called "na tura l  ordering" we  g e t  t he  bandmatrix 

with m = 12. Solved by t h e  algorithm f o r  bandmatrices 

80 x 13 = 1040 elements are t r ea t ed ,  

2. Ordered by procedure 2 and solved by the  algorithm f o r  pipematr ices ,  

f i l l  is  230.' 

Ordered i n  the  order ing given by the  "minimal degree algorithm'' 

and solved by the  genera l  a lgori thm, f i l l  is 188. 

3. 

I n  comparison with 1 the  f i l l s  i n  2 and 3 are approximately the  same, 

but  i n  case 3 w e  requi re  the  genera l  algorithm for solving the  system. 

The technique where the  matr ix  is permuted by t h e  procedure 

1 or 2 i n t o  the  pipematrix form and t h e  system is solved i n  the  corres- 

ponding way is advantageous i f  appl ied t o  c e r t a i n  matrices (as  t he  

example 4.1, 4.2) i n  comparison with both of the  o t h e r  approaches 

mentioned i n  Chapter 2, 
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The algorithm f o r  solving t h e  system with a pipematrix and, 

i n  p a r t i c u l a r ,  i ts  operat ion (handling input  da ta )  are s impler  than 

the  general  algorithm and i t s  appl ica t ion .  

pipematrix form is  more general  than a bandmatrix form, which, i n  

tu rn ,  may be  an advantage; p a r t i c u l a r l y  i f  t he  order ing has been 

found f o r  a se t  of matr ices  with the  same zero-nonzero s t r u c t u r e  as 

i n  t h e  example 4.2. 

On t h e  o the r  hand a 
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